

Totally Focused. Totally Independent.

Technical Guide

RPb:9;P *C-T<u>YPE</u>*

The world's largest independent producer of alternators 1 – 5,000kVA

General Data

Standards

Alternators are designed and produced within an ISO 9001 environment. The entire series is manufactured according to, and complies with, the most common specifications such as CEI 2-3, IEC 34-1, EN 60034-1, VDE 0530, BS 4999-5000, NF 51.111, CAN/CSA-C22.2 No14-95-No100-95, NEMA MG 1-2011, ISO 8528-3. Other standards such as UL1446, UL 1004/4 and /B are available on request.

Windings and Performances

All windings are 2/3rds pitch to eliminate triplen harmonics within the voltage waveform and to avoid excessive neutral currents in certain parallel operating conditions. A fully interconnected aluminium or copper damper cage is supplied on the rotor of all models (excluding the ECP3 series).

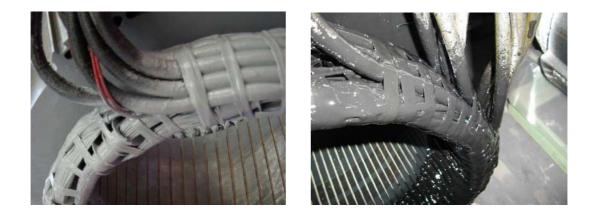
12 wire reconnectable:

50Hz - 380V to 440V and 220/110V to 240/120V (de-rates may apply at certain voltages) 60Hz - 380V to 480V and 220/110V to 240/120V (de-rates may apply at certain voltages)

6 wire reconnectable:

50Hz - 380V to 440V and 220V to 240V (de-rates may apply at certain voltages) 60Hz - 380V to 480V and 220V to 240V (de-rates may apply at certain voltages)

	Stan	Standard		Special (dedicated)				
Winding Configurations	12 wire Reconnectable	6 wire Reconnectable	380V and 600V 60Hz	690V 50/60Hz	220-240V 1ph 50Hz	220-240V 1ph 60Hz		
ECP3 to ECO38	Std	Option	Option	Option	Option	Option		
ECO40 to ECO46	Std	Option	Option	Option	Option (to ECO40)	Option (to ECO40)		
Insulation materials	Class H	Class H	Class H	Class H	Class H	Class H		
High efficiency	Std	Std	Std	Std	Std	Std		
High motor starting	>300%	>300%	>300%	>300%	>300%	>300%		
THD (Total Harmonic Distortion)	Typically <3.5% full load L-L	Typically <3.0% full load L-L	Typically <3.5% full load L-L	Typically <3.5% full load L-L	Typically <4.5% full load L-N	Typically <4.5% full load L-N		
Interference suppression		VDE 0875 G/N/K, EN61000-6-3, EN61000-6-2, others available on request						


Winding Protection

There are various degrees of protection for the windings following the standard impregnation process, as can be seen here. The TOTAL+ butadienic black flexible coating is recommended for arduous applications.

Winding Protection:	STANDARD	STANDARD+	GREY	GREY+	TOTAL+ (3% de-rate may apply on certain models)
ECP3	Std	Option	Option	Option	Option
ECP28 and ECP32	-	Std	Option	Option	Option
NPE32, ECP34 to ECO46	-	-	Std	Option	Option

General Data

Grey treatment (marinization) on the left, TOTAL+ treatment shown on the right. The EG43 grey varnish, is an high temperature insulating enamel that forms a tough and flexible film, with excellent moisture and chemical protection. It is water and oil proof, and also protects windings from abrasion. It is applied spraying an over coating layer over the impregnated winding, or dipping the stator in a varnish barrel for superior treatments

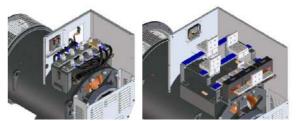
The TOTAL+ is a protection system that makes Mecc Alte special. It is the ultimate winding treatment that offers truly superior performances when the environment is really harsh, or the application very demanding. It is a rubbery protection treatment, used to replace epoxies and silicones winding encapsulation. The TOTAL+ flexible black compound cures to a tough, resilient, glossy black thick coating that seals the copper against moisture and chemical attacks. Due to its encapsulation capability and flexibility, is also extremely resistant to the particle abrasion as it adsorbs the impacts. Moreover, the high flexibility leads to a long-trouble less life protection, as the compound follows elastically the thermal expansion cycles of the windings from the cold to the hot condition and vice versa without forming any cracks.

Protection for Environment

In addition to protection on the windings themselves, the alternators can have increased ingress protection. Standard levels are IP23 with further upgrades available to include inlet filters, IP43 and IP45: 7% de-rates apply on inlet filters and IP43 protection. 20-30% de-rates apply for IP45 depending on alternator model.

Additional air exit louvres (called IP23+) are optionably retrofittable in the overall ECP32 to ECO 46 range, in order to comply to the most strict marine regulations.

Construction


The robust mechanical structure withstands up to 5G in any direction and 9G vertically and its design permits easy access to the connections and components during routine maintenance check-ups. The mechanical design has used the most advanced FEM techniques. The materials used are: FEP12 steel for the frame, C45 steel for the shaft and cast iron or aluminum pressure die cast for the end-brackets: fans are aluminum die casted either nylon fiber glass loaded, UL compliant materials. Rotors are dynamically balanced according grade 2.5 of ISO 1940-1.

Terminals and Terminal Box

Easy access to regulators is assured through a pull out drawer or a drop down panel to allow safer adjustment. Large terminal boxes allow easy access of power cables, in the ECO43 and ECO46 higher power ranges the terminal allow the convenient choice of power cable or busbar connection with versatility of entry and connection. Current transformers are available as an option on series ECO 40, 43 and 46 with single or dual output.

Excitation and Regulation Systems

All ECP/ECO series have MAUX auxiliary winding to power the digital regulator. Both DSR and the DER1 are available to connect to PC through the DxR2 USB interface and DxR TERMINAL software to interrogate/download alarms & settings for analysis or for cloning other regulators. DER2 has got an integrated USB connection and can be connected to the PC without any optional connection boards. More settings such as LAMS, digital RAM based synchronous external control and soft start are obtainable through the DxR connection. Simple analogue potentiometers are available for the more usual adjustments.

Excitation Systems	DSR	DER1	DER2
ECP3 to ECO38	Std	Option	Option
ECO40 to ECO46	-	Std	Option
Parallel Operation			\checkmark
Mains Parallel			\checkmark
3 Phase Sensing (rms)	-	Ń	\checkmark
Accuracy	+/-1%	+/-0.5%	+/-0.5%
Remote Voltage Control		Ń	\checkmark
Alarm Log		Ń	\checkmark
Analogue and Digital Configurable		Ń	\checkmark
LAMS (Load Acceptance V/f)		Ń	\checkmark
APO (Active Protection Output)			\checkmark
Soft Start			\checkmark
High dynamic response	-	-	\checkmark
USB connection without external boards	-	-	

For a given motor start duty a smaller machine may be selected – also enhanced by low sub-transient reactance values for non-linear loads. The whole range from 6.5 to 3400kVA is capable of >300% sustained short circuit current for up to 20 seconds.

General Data

Optional PMG3

PMG3 can be retro fit or factory fit on ECO 40, 43 and 46 series. This smart MeccAlte design allows an easy fix kit, through a tapered cone coupling and a simple replacement of the rear air louvre. PMG3 is also available on ECO 38, when ordered from the factory.

The complete AVR range is fully compatible with both MAUX and PMG3 systems, this minimises spare part management and flexibility of stock as one AVR suits all applications. The PMG3 is delivering the same amount of kVA available with the MAUX.

Accessories

Additional optionals can be fit on our alternator series, such as PTC thermistors or PT100 both on windings and bearings, space heaters, high and low profile of terminal boxes (on most series), air filter clogging sensors, rotating diode bridge failure sensor (RBD), power factor controller for parallel operation (PFR/2), parallel devices (standard from ECO 40), air filters, IP43 and IP45 protections, marine IP23 + protection for SOLAS requirements and many others.

Deration coefficients

		Ambient temperature (Celsius)				
Altitude (meters)	25	40	45	50	55	60
<i>≤ 1000</i>	1.07	1	0.96	0.93	0.91	0.89
> 1000 <u><</u> 1500	1.01	0.96	0.92	0.89	0.87	0.84
<i>> 1500 ≤ 2000</i>	0.96	0.91	0.87	0.84	0.83	0.79
> 2000 ≤ 3000	0.9	0.85	0.81	0.78	0.76	0.73

Notes on short circuit curves

The indicated coefficients have to be used to correct the The indicated coefficient have to be used to correct the three three phase short circuit curves values as a function of the rated voltage.

phase short circuit curves values as a function of the type of short circuit voltage.

	Hz	60	Hz	50
	Factor	Voltage	Factor	Voltage
Istai	0.85X	415	0.93X	380
Mi	0.90X	440	1X	400
Su	0.95X	460	1.04X	415
Max	1X	480	1.10X	440

	3 phase	2 phase L-L	1 phase L-N
Istantaneous	1X	0.87X	1.30X
Minimum	1X	1.80X	3.20X
Sustained	1X	1.50X	2.50X
Max Duration	20 sec.	10 sec.	4 sec.

All the curves are shown for series or parallel star connection at 400V 50 Hz or 480V 60 Hz. If the unit is reconnected from series to parallel star, the additional coefficient is 2X. From series star to series delta, it is 1.72X. From series star to parallel delta. it is 3.44X.

tr RQSr

000000000000000

V

b x ux	;	V t≤ vt	U
b°t x ux	:	b xv≤ vt	Vb 9:
^ ux y ≤x	89	^ QR Oxt $\leq z$ x	@ 7 C49d e
R xv ≤	0 ° x	$QROxt \leq z = x$	@ 8949d e
dxz t x	Qed]t≤ ax xxw	99=7
i ≤ w≤ z ≤v°	96:	N ≤ wx	8777
Pwx tzx xyx x vx	f7;7=e:	Ot t v≤ z	\éa8C;748

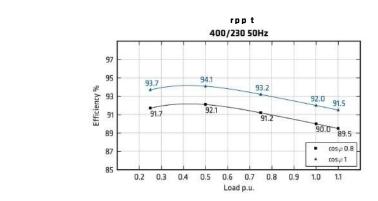
;77h4=7U M88=6;7 P4753b54etwtw			
	RPb: 9 9[; P		
hN	82,5		

4

et t RPb:99[; P Xd Qsxv4t ≤ v° xtvtvx % 319,6 X'd Qsxv4t ≤ t st xtvtvx % 14,3 X''d Qsxv4t ≤ u t st xtvtvx % 7,4 Xq c twt x4t ≤ v° % xtvt vx 125,7 X''q c twt x4t ≤ t st % xtvt vx % X''q c twt x4t ≤ u t st % xtvt vx 36,6 X2 ^xzt ≤ x4 x xvx xtvt vx % Xo mx x xvx xtvt vx 4,11	
X'd Qsxv 4t s t st xtv t vx % 14,3 X'd Qsxv 4t s u t st xtv t vx % 7,4 Xq c twt x4t s v* % 125,7 X'q c twt x4t s t st % % 125,7 X'q c twt x4t s u t st % % 36,6 X'q ^xzt s x4x x vx xtv t vx % 21,5	
X"d Qsxv 4t s ut st xtv t vx % Xq c twt x4t s v° % X'q c twt x4t s t st % X'q c twt x4t s t st % X'q c twt x4t s t st % X''q c twt x4t s ut st % X2 ^xzt sx4x x vx xtv t vx % 21,5	
Xq c twt x4t ≤ v° % 125,7 X'q c twt x4t ≤ t sx % 125,7 X'q c twt x4t ≤ t sx % 36,6 X2 ^xzt ≤ x4 x x vx xtv t vx % 21,5	
xtvt vx X'q c twt x4t ≤ t sx % X''q c twt x4t ≤ u t sx % X''q c twt x4t ≤ u t sx % X2 ^xzt ≤ x4 x x vx xtv t vx %	
xtvt vx X"q c twt x4t ≤ u t sx % X2 ^xzt ≤ x4 x x vx xtv t vx % 21,5	
xtv t vx X₂ ^xzt ≤ x4 x x vx xtv t vx % 21,5	
Xo mx x vx xtv t vx % 4,11	
Kcc e° v≤v ≤ t ≤ 0,31	
T'd ft $\mathfrak{s} \leq xv$ t sec 0,074	
T"d eutsx ≤ xv t sec 0,016	
T'do a x $v \le v \le \le xv$ t sec 1,67	
Ta N t $x \le xv$ t sec 0,022	

0

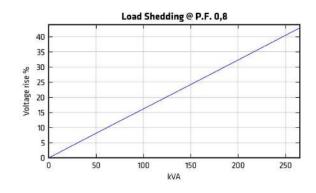
lo Rv≤t≤ v x t tw	А	0,6
lc Rv≤t≤ v x ty tw	А	2,9
ax tw		8° ≤ t@° x ≤ w887, t xw tw
ax twx97xv5	,	300
Uxt w≤ ≤t ≤	W	7333
fxx° xUt ⊴vStv 4fUS	%	<2
itxy Q≤ 5/fUQ0y tw[[6[^	%	2,9 / 2,9
itxy Q≤ 5/fUQ0 tw[[6[^	%	2,5 / 2,5



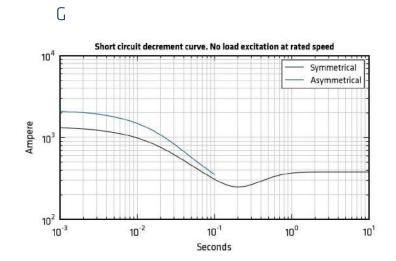
tr RQSr

t n TN x

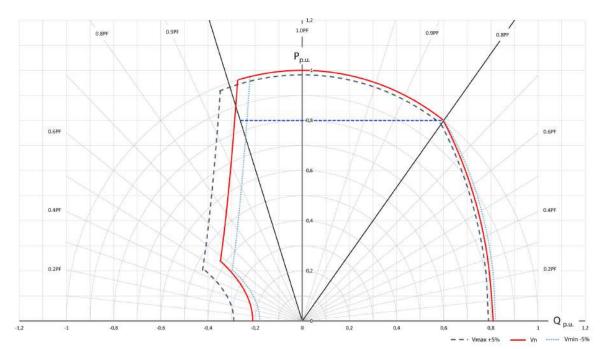

] vax			; 77 69: 7h =7U				
		759=	75⊧	754⊨	8	888	
RPb: 9 9[; P	,	91,7	92,1	91,2	90,0	89,5	



tee Vwe



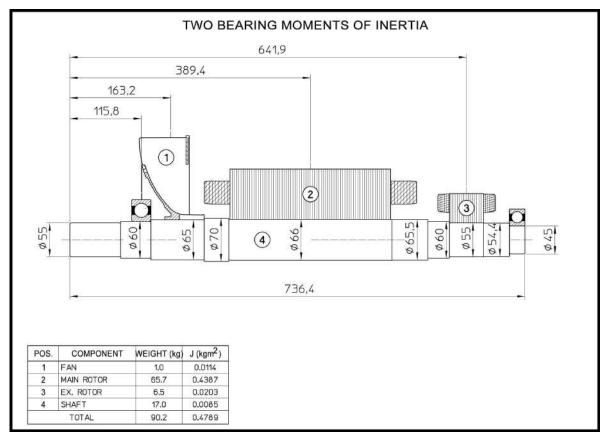
TNx

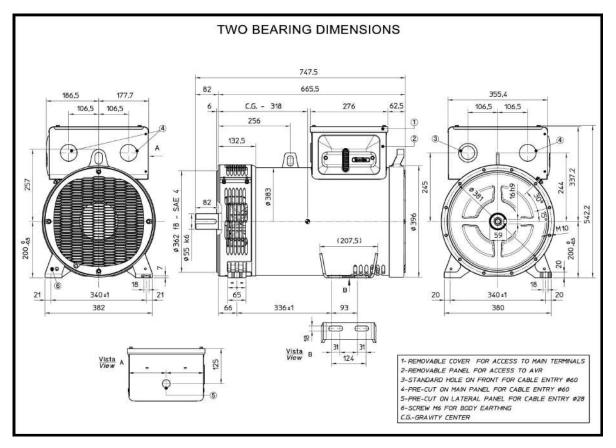

meccalte

tr RQSr

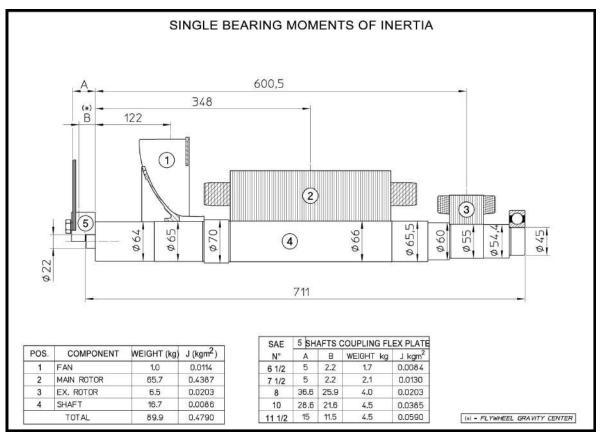
0 r

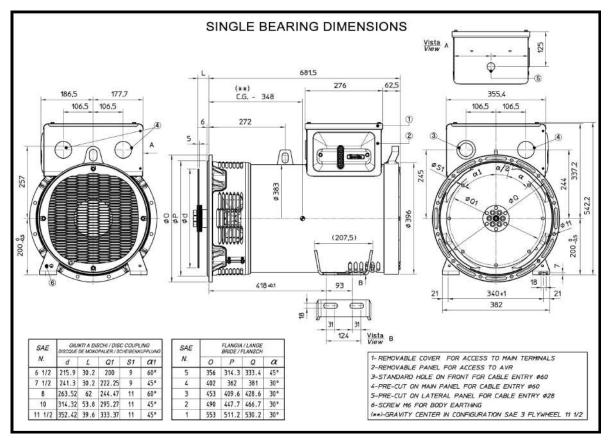
Qt t		RPb: 9 9[; P
		=7 U
Qt x vtzx		N ≤≤
e t i $\leq w \leq z dx \leq t vx / 97 PO$	Ω	0,035
d i $\leq w \leq z dx \leq t vx /97 PO$	Ω	1,715
et R v $\leq x$ dx \leq t vx /97 PO	Ω	10,6
d	Ω	0,417
ixsz° yv xxzxxt	kg	252,0
g utt vxw tzx≤v	kN/mm	5,2
N≤ y	m ³ /min	15,7
^ ≤x x x t 8 6A	dB(A)	72/58


S



tr RQQSr





tr RQQSr

Greenpower AB Helsingborgsvägen Varalöv 262 96 Ängelholm Tel: 0431 222 40 Fax: 0431 222 70 E mail: info@greenpower.se web:www.greenpower.se